
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

  

  

1 Improved  forest  dynamics  leads  to  better  hydrological  predictions  in  watershed  modeling  

2 ABSTRACT  

This  study  explored  how  the  characterization  of  forest  processes  in  hydrologic  models  affects  watershed  hydrological  

responses.  To  that  end,  we  applied  the  widely  used  Soil  and  Water  Assessment  Tool  (SWAT)  model  to  two  forested  

watersheds  in  the  southeastern  United  States.  Although  forests  can  cover  a  large  portion  of  watersheds,  tree  attributes  

such  as  leaf  area  index  (LAI),  biomass  accumulation,  and  processes  such  as  evapotranspiration  (ET)  are  rarely  

calibrated  in  hydrological  modeling  studies.  The  advent  of  freely  and  readily  available  remote-sensing  data,  combined  

with  field  observations  from  forestry  studies  and  published  literature,  allowed  us  to  develop  an  improved  forest  

parameterization  for  SWAT.  We  tested  our  proposed  parameterization  at  the  watershed  scale  in  Florida  and  Georgia  

and  compared  simulated  LAI,  biomass,  and  ET  with  the  default  model  settings.  Our  results  showed  major  

improvements  in  predicted  monthly  LAI  and  ET  based  on  MODIS  reference  data  (NSE  >  0.6).  Simulated  forest  

biomass  also  showed  better  agreement  with  the  USDA  forest  biomass  gridded  data.  Through  a  series  of  modeling  

experiments,  we  isolated  the  benefits  of  LAI,  biomass,  and  ET  in  predicting  streamflow  and  baseflow  at  the  watershed  

level.  The  combined  benefits  of  improved  LAI,  biomass,  and  ET  predictions  yielded  the  most  optimal  model  

configuration  where  terrestrial  and  in-stream  processes  were  simulated  reasonably  well.  We  performed  automated  

model  calibration  using  two  calibration  strategies.  In  the  first  calibration  scheme  (M0),  SWAT  was  calibrated  for  daily  

streamflow  without  adjusting  LAI,  biomass,  and  ET.  In  the  second  calibration  scheme  (MLAI+BM+ET),  previously  

calibrated  parameters  constraining  LAI,  biomass,  and  ET  were  incorporated  into  the  model  and  daily  streamflow  was  

recalibrated.  The  MLAI+BM+ET  model  showed  superior  performance  and  reduced  uncertainties  in  predicting  daily  

streamflow,  with  NSE  values  ranging  from  0.52  to  0.8.  Our  findings  highlight  the  importance  of  accurately  

representing  forest  dynamics  in  hydrological  models.   
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27 1. INTRODUCTION 

Any ecosystem in a watershed affects the quantity and quality of the water passing through it by 

either improving or degrading the hydrologic services (Brauman et al., 2007). For example, 

forested ecosystems might increase rainfall infiltration rates while decreasing water yield (Filoso 

et al., 2017). This is mainly due to the higher water infiltration capacity of forest soils compared 

to other land uses (Bruijnzeel, 2004). Since forests can make up large portions of a watershed 

system, it is important to understand their role in the hydrologic cycle and how they influence the 

pathways and distribution of water in the watershed (Amatya el al., 2015). Forests can tightly 

interact with the hydrologic cycle through the canopy interception of precipitation; the 

redistribution of water via throughfall, stemflow, surface runoff, lateral flow, soil infiltration, 

percolation, groundwater recharge and baseflow; and the loss of water by soil evaporation and 

transpiration from foliage. Thus, through the use, transport, and partitioning of water, forest 

ecosystems can significantly alter the volume and timing of water reaching downstream locations 

(Brauman et al., 2007). 

In recent years, there has been a growing interest in investigating the interface between 

watershed vegetation and hydrologic processes (Amatya et al., 2015; Hernandez et al., 2018; Sun 

et al., 2005; Williams et al., 2012; Wit, 2001). As water yield from forestlands is critical for 

supporting ecosystem biodiversity and local communities, there is an urgent need to better 

understand the nexus between forests and water in order to orient science-based sustainable 

watershed development (Amatya et al., 2015; Brown et al., 2016; Sun et al., 2005). Watershed-

scale hydrological models have been successfully employed to investigate the interactions among 

forests and components of the hydrological cycle (Brown et al., 2015; Golden et al., 2016; Ziemer 

et al., 1991). A hydrological model capable of accounting for the spatial and temporal variability 
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of factors affecting hydrological processes (e.g., intra-annual plant growth cycle, landscape 

heterogeneity) is a useful tool for understanding, predicting, and managing water resources (Khaki 

et al., 2019; Loizu et al., 2018; Zhang et al., 2019). In this context, reliable watershed models that 

can realistically represent forest-water relationships can be powerful tools. 

An accurate representation of the simulated system is critically important for the 

performance of hydrological models in predicting a given target variable (Jiang and Wang, 2019). 

Even though forests can regulate water cycling and significantly affect water fluxes within a 

watershed, watershed modelers rarely pay attention to the accuracy of their representation in 

capturing forest attributes and processes such as leaf area index (LAI), biomass, and 

evapotranspiration (ET). Streamflow is usually selected as the only variable to measure the 

performance of watershed models since streamflow data are relatively easy to obtain (Li Zejun et 

al., 2020). The information contained in gauged streamflow data may not sufficiently capture 

vertical fluxes and how they vary in space and time within the watershed (Rajib et al., 2018), thus 

leading to inaccurate representation of relative contributions of various fluxes. For instance, 

hydrological fluxes such as infiltration, soil evaporation, plant transpiration, and 

evapotranspiration evolve at different spatial and temporal scales within a watershed and affect the 

water balance (Tague and Band, 2001). Streamflow data lumps horizontal water movement (i.e., 

runoff) and vertical water fluxes (e.g., evapotranspiration) together (Li Zejun et al., 2020), thus 

leading to inaccurate representation of horizontal and vertical fluxes. This may lead to erroneous 

conclusions if the model is used to assess, for example, the impacts of forest management practices 

(e.g., thinning, fertilization) or deforestation/afforestation on water resources. Also, forestlands 

can modify soil hydraulic conductivity, porosity, capillarity, and texture (e.g., increased organic 
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matter content), having underlying effects on soil water infiltration, subsurface flows, and 

groundwater flows (Tabacchi et al. 2000). 

The Soil and Water Assessment Tool (SWAT) (Arnold et al., 1998) has been extensively 

applied worldwide to estimate water yield (Abou Rafee et al., 2019; Adla et al., 2019; Kaur et al., 

2019), sediment loss (Wang and Kalin, 2018; Brighenti et al., 2019; Himanshu et al., 2019; Mishra 

et al., 2007), nutrient loading ( Ramesh et al., 2020; Akhavan et al., 2010; Chu et al., 2004; Haas 

et al., 2016), and assess the impacts of climate ( Dosdogru et al., 2020; Ahn et al., 2016; Anjum et 

al., 2019; Awan and Ismaeel, 2014) and land use/cover changes (Anand et al., 2018; Haas et al., 

2021a; Jodar-Abellan et al., 2018; Li et al., 2014; Romanowicz et al., 2005; Teklay et al., 2019; 

Wang et al., 2018) on water resources. 

SWAT has not been sufficiently tested in forested ecosystems yet (Yang et al., 2018) and 

had shown some limitations to accurately simulate plant growth (Zhang et al., 2020), especially 

LAI development. To address these issues, a few studies have been carried out to revise SWAT’s 

plant database. For example, Strauch and Volk (2013) proposed a new plant growth approach 

based on changes in soil moisture for tropical regions and presented a logistic LAI decline function. 

Similarly, Alemayehu et al. (2017) presented a quotient of rainfall and reference 

evapotranspiration to initialize the plant growth cycle in SWAT. The authors tested the 

methodology for a variety of land uses in Kenya and Tanzania and showed improvements in 

simulated LAI based on remote-sensing derived data. Yang and Zhang (2016) identified unrealistic 

parameter values representing evergreen forests, deciduous forests, and mixed forests in SWAT 

and proposed an improved model parameterization tested at ten Ameriflux sites. Yang et al. (2018) 

extended the previous study to the watershed scale and showed positive effects for streamflow 

prediction. Watson et al. (2005) replaced the original SWAT plant growth model with the 3-PG 
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95 forest  growth  model  to  better  represent  the  growth  of  Eucalyptus  trees  in  Australia.  More  recently,  

Lai  et  al.  (2020)  presented  a  forest  growth  model  featuring  variable  density  and  mixed  vegetation  

types  in  SWAT.  Their  results  showed  that  the  modified  model  outperformed  the  original  model  in  

simulating  flow  and  nutrient  load.   

Although  all  these  studies  offer  valuable  insights  and  potential  contributions  to  the  

modeling  community,  they  fall  into  oversimplifications  (e.g.,  lumped  forest  types),  insufficient  

representation  of  plant  growth  components  (e.g.,  LAI  +  biomass  +  ET),  an  excessive  amount  of  

input  data  (e.g.,  forest  growth  data  required  by  3-PG),  and  lack  of  demonstration  of  the  extents  to  

which  forest  processes  affect  the  watershed  hydrology.  To  the  best  of  the  author’s  knowledge,  no  

study  in  the  literature  demonstrated  the  watershed-scale  benefits  of  realistically  representing  forest  

attributes  in  watershed  modeling.  Most  of  the  modeling  studies  found  in  the  literature  lumped  

parameters  for  groups  of  forests  and  thus  did  not  consider  underlying  characteristics  of  specific  

forest  types,  such  as  pines.  In  forested  regions  such  as  the  southeastern  U.S.,  for  example,  where  

specific  pine  species  like  loblolly  pine  (Pinus  taeda  L.)  and  slash  pine  (Pinus  elliottii)  dominate  

the  landscape,  it  is  necessary  to  better  test  SWAT’s  skills  and  tune  the  model  to  better  represent  

these  tree  species.   

Considering  that  forests  can  cover  large  portions  of  watersheds  and  greatly  interfere  with  

the  hydrological  cycle  and  that  SWAT  has  been  widely  applied  as  a  hydrological  prediction  and  

assessment  tool,  it  is  fundamental  to  understand  and  evaluate  the  model’s  skills  in  forested  

ecosystems.  LAI  and  biomass,  besides  being  key  forest  attributes  representing  forest  growth  and  

dynamics,  play  important  roles  in  SWAT’s  hydrological  computations.  For  instance,  LAI  affects  

plant  transpiration,  canopy  rainfall  storage,  and  evapotranspiration  (if  the  Penman-Monteith  

method  is  used  to  simulate  ET)  in  SWAT  (Neitsch  et  al.,  2011).  Likewise,  aboveground  biomass  

96 

97 

98 

99 

100 

101 

102 

103 

104 

105 

106 

107 

108 

109 

110 

111 

112 

113 

114 

115 

116 

117 

5 



 
 

              

                

               

           

                

                  

                   

                     

              

                   

              

              

             

             

              

            

             

              

            

                

                

              

              

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

and soil residue affect soil evaporation rates in the model. SWAT’s semi-distributed characteristic 

capable of discretizing the landscape into smaller units combined with the vast amount of freely 

available remote-sensing data presents a great opportunity for modelers to step forward from the 

traditional modeling calibration approach (i.e., streamflow only) and incorporate additional 

constraints into the models. A large number of studies have reported the benefits of using remote-

sensing derived data to increase the accuracy of watershed models (Gui Ziling et al., 2019; Ha et 

al., 2018; Herman et al., 2018; Jiang and Wang, 2019; Ma et al., 2019; Odusanya et al., 2019; 

Parajuli et al., 2018; Rajib et al., 2016; Tobin and Bennett, 2017; Y. Zhang et al., 2020). In a recent 

effort, Haas et al. (2021b) developed an improved SWAT re-parameterization of forest processes 

and tested it for loblolly pine and slash pine, the two major pine species in the southeastern United 

States. The methodology was based on remote-sensing data combined with field observations and 

was successfully tested at different field-scale sites across the southeastern United States. Although 

the developed re-parameterization outperformed the default model in predicting tree LAI, biomass, 

and ET, the hydrological implications at the watershed scale were not investigated. 

Therefore, the overreaching goal of this study was to investigate the importance of 

accurately capturing forest processes in watershed-scale hydrological models and assess their 

implications for simulated discharge and water balance computation. Our specific objectives were 

to: (1) assess the feasibility of transferring previously calibrated biophysical parameters to two 

forested watersheds; (2) determine which forest attributes and processes (LAI development, 

biomass accumulation, or ET rates) affect streamflow and water budget the most; and (3) assess 

the effects of multi-facet model calibration (LAI + biomass + ET + streamflow) on streamflow 

prediction compared to traditional model calibration (streamflow only). It is hypothesized that an 

enhanced representation of forest dynamics in SWAT will positively affect its performance in 
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simulating streamflow due to a more realistic prediction of leaf area development, canopy storage, 

and precipitation lost as ET. The novelty of this study is in demonstrating the effect of forest 

dynamics on hydrological processes using a ready-to-go improved model parameterization based 

on open-source remote sensing products, published literature, and shared field observations. Such 

level of detail and reflection of real-world interplays of natural processes (i.e., water, energy, 

vegetation) could never be achieved through traditional model calibration against streamflow only. 

The remainder of the paper is organized as follows: In section two, we describe the study 

area, the watershed model utilized, the modeling scenarios designed to assess the importance of 

forest processes in hydrologic predictions, and the statistical analyses employed to evaluate the 

model performance. In section three, we present the results, discuss, and interpret them in light of 

the published literature, highlight some limitations of our study, and suggest future directions 

related to the incorporation of forest growth and dynamics in watershed models. Finally, in section 

four, we summarize our main findings and stress their implications in applying watershed models 

as tools to support decision-making. 

2. MATERIAL AND METHODS 

2.1.Study sites 

The Upatoi Creek and Upper Santa Fe River watersheds located in Florida and Georgia, 

respectively, were selected as the study sites (Fig. 1). These watersheds were suitable to test our 

hypothesis that a better simulation of key forest processes can result in better streamflow prediction 

because both are highly forested in either loblolly or slash pine tree species. Both have long-term 

daily streamflow records. The Upatoi Creek Watershed (UCW) is in Chattahoochee County, near 

Columbus, Georgia, and has a drainage area of approximately 900 km2. Upatoi Creek is a 57 km 

long river running from South Columbus to the Chattahoochee River. The elevation ranges from 
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73 to 255 meters in the watershed, and according to the Soil Survey Geographic Database 

(SSURGO), there are 172 different soil classes at UCW, out of which 75 are hydrological soil 

group (HSG) A, 47 are HSG B, and 50 are HSG C. The land use and cover at UCW are mainly 

dominated by loblolly pine trees (57%) and shrubs (9%). 

The Upper Santa Fe River Watershed (SFRW) is part of the Santa Fe River Basin system 

and has a drainage area of approximately 500 km2 and elevation ranging from 25 to 83 meters. 

Located predominantly in Union County, Florida, the SFRW is situated approximately 40 km north 

of the city of Gainesville. In terms of land use and cover, the SFRW is dominated by slash pine 

trees (56%) and hay-pasture (12%). (Soils in the SFRW are mostly HSG’s A and B with a few 

HSG’s C. 

Additional Hydrometeorological characteristics portraying both watersheds are 

summarized in Table 1. 
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 Figure  1. Location   map.  (A)  Upatoi  Creek  watershed,  (B)  Upper  Santa  Fe  River  watershed. 

 

Table   1. Watershed  characteristics  

 Hydrometeorological  variable  Upatoi  Creek Upper   Santa  Fe 

 Latitude 32.544,   32.61  N   29.964, 30.165   N 

 Longitude  -84.811,  -84.442  W  -82.247,  -82.045  W 

 Area  (km2)  881.75  487.84 

 Average  mean daily   temperature (ₒC)   (1995-2018)  18.2  20.48 

 Average  annual precipitation   (mm)  (1995-2018)  1295.8 1326.5  

 Mean  annual  potential evapotranspiration  (mm)   (1995-2018)  1268  1215.2 

 Mean  annual  discharge  (mm)*  (2002-2018)  481  314 

 Mean daily   streamflow  (m3/s)  (1998-2018)  10.7 
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2.2.The SWAT Model 
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182 The  SWAT  hydrological  model  was  used  in  the  current  study  to  investigate  the  effects  of  forest  

dynamics  on  key  hydrological  processes  within  the  study  watersheds.  SWAT  is  one  of  the  most  

widely  used  hydrological  models  and  a  well-established  tool  capable  of  simulating  various  water  

fluxes  (e.g.,  surface  runoff,  lateral  flow,  groundwater  contribution)  and  plant  growth.  Additional  

model  components  include  weather,  transport  of  sediment,  nutrients,  bacteria,  and  pesticides,  and  

land  management.  SWAT  is  a  watershed-scale,  semi-distributed,  continuous-time,  open-source  

model  developed  by  the  United  States  Department  of  Agriculture  (USDA)  Agricultural  Research  

Service  (ARS).  The  model  discretizes  a  watershed  into  subwatersheds,  which  are  further  

discretized  into  unique  combinations  of  land  use,  soils,  and  slope  called  hydrological  response  

units  (HRU’s)  (Neitsch  et  al.,  2011).  

In  SWAT,  the  water  balance  calculation  for  each  HRU  considers  five  storages:  snow,  canopy  

storage,  the  soil  profile  with  up  to  ten  layers,  a  shallow  aquifer,  and  a  deep  aquifer.  The  water  

balance  is  calculated  using  the  following:   

∆𝑆 =  ∑ ( 𝑃 − 𝑄  − 𝐸𝑇 − 𝑤 )  (1)  

where,  ∆𝑆  is  the  change  in  water  storage,  P,  Qtotal,  ET,  and  𝑤   are  the  daily  amount  of  

precipitation,  total  water  yield,  evapotranspiration,  and  the  total  amount  of  water  exiting  the  

bottom  of  the  soil  profile  on  a  given  day,  respectively.  The  value  of  𝑤   is  a  sum  of  the  amount  

of  water  percolating  out  of  the  lowest  soil  layer  and  the  amount  of  water  flowing  past  the  lowest  

boundary  of  the  soil  profile  due  to  bypass  flow.  The  total  water  yield  (Qtotal)  represents  an  

aggregated  sum  of  surface  runoff,  lateral  flow,  and  the  base  flow  contribution  to  streamflow.  In  

this  study,  surface  runoff  was  computed  using  the  Soil  Conservation  Service  (SCS)  Curve  Number  
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(CN) method based on daily rainfall observations, and the Penman-Monteith (Monteith, 1965) 

method was selected for estimating evapotranspiration. 

SWAT incorporates a simplified version of the Environmental Policy Integrated Climate 

(EPIC) model (Williams, 1990) to simulate the growth of different types of crops and trees. The 

initialization of the growth cycle in SWAT is based on the heat unit theory: plants require a certain 

amount of heat to reach maturity, which is only reached when a plant-specific total heat unit is 

attained. Once the plant reaches maturity, it stops transpiring and uptake of water and nutrients. In 

SWAT, the growth cycle restarts every year based on a latitude-dependent dormancy routine or 

via harvest and kill operation in the model’s management module. At the beginning of each growth 

cycle, the accumulated heat units drop to zero and the LAI is set to a plant-specific minimum value 

defined by the user (Neitsch et al., 2011). During the early stage of plant growth, SWAT simulates 

phenological development using an optimal leaf area index development curve. The plant’s 

biomass accumulation is based on canopy light interception and the plant’s efficiency in converting 

intercepted radiation into biomass. For detailed information about SWAT’s representation of forest 

growth and dynamics and how it affects the simulation of hydrological processes, readers are 

referred to Haas et al. (2021b). 

Given SWAT’s limitations in simulating tree growth (Lai et al., 2020; Ma et al., 2019; 

Strauch and Volk, 2013; Yang et al., 2018; Yang and Zhang, 2016), the current study uses the 

improved model parameterization describing loblolly and slash pine growth and dynamics 

introduced by Haas et al. (2021b). This improved forest parameterization was developed based on 

field measured forestry data, remote-sensing estimates of LAI, expert knowledge, and a review of 

published literature. Further details about SWAT’s computation of physical processes can be found 

in Neitsch et al. (2011). 
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226 2.3.Model setup and data acquisition 

As a semi-distributed watershed-scale hydrological model, SWAT requires several geospatial 

inputs and weather forcing to simulate physical processes within a watershed. The ArcSWAT 2012 

(version 10.4.19) interface was used in this study to delineate the watersheds and define their 

respective number of HRU’s. First, the watershed’s boundaries were delineated based on 10 meters 

resolution digital elevation model (DEM) from the National Elevation Dataset (NED) and 

hydrography network from the National Hydrography Dataset (NHD). Soil maps and soil 

characteristics (e.g., soil depth, soil hydraulic conductivity, available water capacity) needed to 

parameterize SWAT’s soil database were obtained from SSURGO as gridded data covering the 

watershed’s drainage area. A reclassified land use map based on the publicly available 30 meters 

resolution National Land Cover Database (NLCD) 2016 was ingested in ArcSWAT. 

The land use reclassification was deemed necessary to capture the spatial distribution of 

loblolly and slash pine across the watersheds as accurately as possible. Thus, a pre-processing step 

involving reclassification of NLCD 2016 was conducted using the National Forest Type Dataset 

(NFTD) (Ruefenacht et al., 2008) as a background map to discretize NLCD’s forest classification 

into species-specific and geographically-meaningful types of trees. NFTD is a publicly available 

geospatial dataset at 250 meters resolution developed by the United States Forest Service (USFS) 

Forest Inventory and Analysis (FIA) program and the Geospatial Technology and Applications 

Center (GTAC). This dataset was created to show the extent, spatial distribution, and forest type 

composition of forests within the United States territory. We pre-processed this gridded dataset in 

ArcMap 10.4.1 to make it readable in ArcSWAT during the HRU definition phase. Initially, we 

isolated loblolly pine and slash pine species from NFTD and saved them as a separate raster layer. 

Next, the original NLCD 2016 raster layer was overlaid with the NFTD raster. Using the erase 

12 



 
 

 

 

 

 

 

 

 

 

 

 

 

  

  

  

  

  

  

  

 
 

  Upatoi Creek  Upper  Santa   Fe 

Land   use  class 
 % coverage    - NLCD 

 2016 
 % coverage    - Modified 

NLCD  
 % coverage    - NLCD 

 2016 
 % coverage    - Modified 

NLCD  

249 function  from  the  Analysis  Tool  toolbox  and  ingesting  the  NFTD  loblolly  and  slash  pine  layers  as  

input  (one  after  the  other),  the  NLCD  land  use  classes  overlapping  with  loblolly  and  slash  pine  

layers  were  erased.  The  geospatial  information  of  the  previously  isolated  loblolly  and  slash  pine  

rasters  were  then  copied  (copy  function  on  ArcMap’s  main  toolbar  enabled  through  an  edit  session)  

and  pasted  (paste  function  on  ArcMap’s  main  toolbar)  into  the  NLCD  rasters  that  had  their  original  

classes  erased  in  the  previous  step.  It  is  worth  mentioning  that  this  sequential  pre-processing  was  

applied  to  the  NLCD’s  land  use  classes  representing  forests  only  (e.g.,  forests  deciduous,  forests  

evergreen,  forests  mixed,  and  forested  wetlands),  exempting  other  land  use  classes  such  as  

agricultural  lands  and  urban  spaces.  This  decision  was  made  to  avoid  misclassification,  given  the  

coarser  resolution  of  NFTD  compared  to  NLCD.  Table  2  shows  the  percentage  cover  of  each  land  

use  class  with  respect  to  the  watershed’s  area,  before  and  after  reclassification.   
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267 Table  2.  Land  use  and  cover  change  after  reclassification  to  consider  loblolly  and  slash  pine  spatial  distribution  
across  the  watersheds  268 
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Open  Water   3%  3% 0%   0% 

 Developed,  Open  Space  4%  4%  6%  6% 

 Developed,  Low Intensity   2%  2%  1%  1% 

 Developed, Medium  Intensity   1%  1%  0%  0% 

 Developed,  High Intensity   0%  0%  0%  0% 

Barren   Land  0%  0%  1%  1% 

 Deciduous  Forest  14%  3%  2%  0% 

Evergreen   Forest 30%   4% 40%   5% 

 Mixed  Forest 15%  3%  0%   0% 

 Shrub/Scrub  9%  9%  6%  6% 

 Herbaceuous  5%  5%  5%  5% 

Hay/Pasture   4%  4%  13%  12% 

Cultivated   Crops  4%  4%  0%  1% 

Woody   Wetlands  8%  2%  25%  6% 
 Emergent  Herbaceuous 

Wetlands  
 0%  0% 0%   0% 

Slash  Pine  _   0%  56%  

Loblolly   Pine  _  57%  1%  

  

 

 

 

 

 

 

 

 

 

 

 

 

269 

270 For  weather  forcings,  this  study  used  daily  precipitation  and  minimum/maximum  

temperature  from  the  PRISM  Climate  Group  (http://www.prism.oregonstate.edu),  hourly  solar  

radiation  and  wind  speed  data  from  the  North  American  Land  Data  Assimilation  System  (NLDAS)  

(https://ldas.gsfc.nasa.gov/nldas)  aggregated  to  a  daily  basis,  and  hourly  relative  humidity  data  

from  the  National  Solar  Radiation  Database  (NSRD)  (Sengupta  et  al.,  2018),  also  aggregated  to  

daily  time-step.  Precipitation,  temperature,  and  relative  humidity  data  at  4  km  resolution  were  

extracted  using  the  centroid  of  each  subwatershed  as  a  spatial  reference,  resulting  in  twenty-three  

virtual  stations  at  UCW  and  twenty-one  at  SFRW.  Solar  radiation  and  wind  speed  estimates  at  12.5  

km  resolution  were  extracted  to  all  NLDAS  grids  overlapping  the  watershed’s  boundary,  which  

resonated  in  eight  virtual  stations  at  both  UCW  and  SFRW.  

To  assess  the  effects  of  improved  SWAT  forest  parameterization  at  the  watershed  scale,  

we  compared  SWAT  predicted  ET  and  LAI  against  MODIS-derived  estimates.  To  accomplish  
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this, we selected subwatersheds almost entirely covered by loblolly and slash pine and then 

compared SWAT outputs of LAI and ET from the largest HRU against MODIS estimates. 

MOD15A2H (Myneni et al., 2015) and MOD16A2 (Running et al., 2017) datasets were used to 

derive LAI and ET data at 4-days and 8-days intervals, respectively, at 500 meters resolution. 

MODIS extracted data were geo-referenced and spatially aggregated to the shape of previously 

delineated polygons representing the located loblolly and slash pine areas using automated routines 

in the Google Earth Engine platform (Gorelick et al., 2017). The simulated forest biomass was 

compared to gridded forest biomass data from the U.S. Department of Agriculture (USDA) Forest 

Service Forest Biomass product, which was developed based on field measurements and statistical 

models (Blackard et al., 2008). Comparison of simulated and observed forest dynamics using the 

default and re-parameterized models are shown in section S1 of the supplementary materials 

(Appendix C). 

We set up the initial growing conditions of slash and loblolly pine in the models by deleting 

all management operations assigned to the management file in ArcSWAT. Next, we assumed that 

trees were fully developed at the beginning of the simulation period by setting the HRU’s land 

cover status as land cover growing from the beginning of the simulation period. Moreover, some 

initial physical conditions like the number of heat units (PHU_PLT), initial leaf area index 

(LAI_INIT), and initial biomass (BIO_INIT) had to be defined to configure the annual growth cycle 

of trees. For loblolly and slash pine, PHU_PLT and LAI_INIT were defined based on the field-

scale model parameterization presented by Haas et al. (2021b) while BIO_INIT was initialized 

according to USDA’s Forest Service forest biomass data for each watershed. 

For streamflow calibration and validation, we used daily streamflow data from the U.S. 

Geological Survey (USGS) gaging stations 02341800 and 02321000 at UCW and SFRW, 
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  Data  Description Source  

305 respectively.  The  complete  dataset  used  for  constructing  and  calibrating/validating  the  SWAT  

models,  as  well  as  their  sources,  are  summarized  in  Table  3.  Based  on  the  described  data,  

SWAT2012  (revision  664)  through  the  ArcSWAT  interface  with  a  10%-10%-0%  (land-use,  soils,  

slope)  threshold  generated  23  subbasins  and  172  HRU’s  for  UCW,  whereas,  21  subbasins  and  138  

HRU’s  were  generated  for  the  SFRW.  The  models  were  run  from  1995  to  2018,  using  3  years  

(1995-1997)  of  initialization  as  model  warm-up  period.   
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321 Table  3.  Description  of  data  and  their  sources.  Model  input  data  refers  to  datasets  utilized  to  construct  the  watershed  
models.  Model  calibration  refers  to  data  utilized  to  constrain  intra-watershed  processes  and  calibrate  discharge  at  the  

watershed’s  outlet.  
322 
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 Topography 
 National Elevation  

 Dataset  at 10   meters 
 resolution 

United   States  Department  of Agriculture   (USDA) Geospatial   Data  Gateway 
(https://datagateway.nrcs.usda.gov/)  

 

Land   use 2016   NLCD 
United   States  Department  of Agriculture   (USDA) Geospatial   Data  Gateway 

(https://datagateway.nrcs.usda.gov/)  
 

 Model  input 
 data 

 Soil 
Gridded   Soil Survey  

Geographic  (gSSURGO)  

United   States  Department of  Agriculture   (USDA) Geospatial   Data  Gateway 
(https://datagateway.nrcs.usda.gov/)  

 

Climate  

Daily   precipitation, 
maximum/minimum  

 temperature,  solar 
radiation,   wind  speed 

 PRISM climate  group   (http://www.prism.oregonstate.edu/),National Land  Data  
Assimilation   Systems (NLDAS)   phase 2  

 (https://ldas.gsfc.nasa.gov/nldas/NLDAS2model_download.php),  National 
Solar  Radiation  Database   (https://nsrdb.nrel.gov/) 

 

Atmospheric  
 deposition 

 Wet and  dry  deposition  of  
 nitrate  and  ammonia 

 National Atmospheric  Deposition   Program  (NADP) 
 (http://nadp.slh.wisc.edu/) 

 
 

  
    

    
 

     
 

 

 
    

    
 

     
 

 

 
  

   

          
    

 

   
  

 

          
    

 

  

   
   

   
  

    
 

Seasonal LAI 

Model 
calibration 

ET 

Biomass 

Annual LAI 

Streamflow 

Moderate Resolution Imaging Spectroradiometer (MODIS) 
(https://lpdaac.usgs.gov/products/mcd15a3hv006/) 

Moderate Resolution Imaging Spectroradiometer (MODIS) 
(https://lpdaac.usgs.gov/products/mod16a2v006/) 

Long-term field studies conducted FMRC, FBRC, and PMRC in Georgia, 
Florida and Alabama, respectively 

Long-term field studies conducted FMRC, FBRC, and PMRC in Georgia, 
Florida and Alabama, respectively 

USGS Water data 
(https://waterdata.usgs.gov/nwis) 

4 days composite dataset 
at 500 meters pixel 

resolution 

8 days composite dataset 
at 500 meters pixel 

resolution 

Field-measured annual 
total trees biomass 

Field-measured annual 
LAI 

Daily discharge from 
stations USGS 02321000 

(FL) and USGS 
02341800 (GA) 
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Parameter-rich  models  such  as  SWAT  can  be  easily  calibrated  for  streamflow  even  though  key  

intra-watershed  processes  such  as  forest  dynamics  are  simulated  poorly.  This  is  because  an  

observed  signal  (e.g.,  point-scale  streamflow)  may  be  reproduced  in  such  models  using  thousands  

of  different  parameter  sets  or  ranges  of  parameter  combinations.  This  problem  is  known  as  

equifinality  (Beven  and  Freer,  2001),  where,  models  can  give  right  answers  for  wrong  reasons.  

One  possible  way  of  minimizing  the  equifinality  problem  is  by  constraining  more  model  variables  

(e.g.,  LAI,  biomass,  ET)  through  additional  observed  data.  Here  we  perform  four  modeling  

experiments  before  streamflow  calibration  in  which  we  progressively  constrain  more  variables  

with  additional  data.  These  experiments  can  help  us  isolate  the  impacts  of  LAI,  biomass,  and  ET  

on  streamflow  prediction  and  water  budget  computation  without  the  confounding  effect  stemming  

from  the  calibration  of  streamflow-related  parameters.  To  measure  the  benefits  and  drawbacks  of  

each  experiment,  we  compared  simulated  baseflow,  streamflow,  watershed-average  ET,  and  runoff  

coefficient  against  observations  and  remote-sensing  derived  estimates.  Observed  baseflow  was  

estimated  from  observed  streamflow  using  the  Web-based  Hydrograph  Analysis  Tool  (WHAT)  

(Lim  et  al.,  2005)  using  its  standard  settings  for  perennial  streams  with  a  porous  aquifer.  The  

experiments  were  as  follows:  

1.  Default  model  (M0):  SWAT  model  was  setup  and  run  without  altering  plant  growth-related  

parameters;  

2.  ET  (MET):  this  experiment  added  ET-related  parameters  (transferred  from  Haas  et  al.  

(2021b))  to  the  default  model  (M0);   

3.  LAI  +  biomass  (MLAI+BM):  this  experiment  incorporated  parameters  controlling  LAI  and  

biomass,  which  were  previously  calibrated  by  Haas  et  al.  (2021b);  
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4.  LAI  +  biomass  +  ET  (MLAI+BM+ET):  this  experiment  included  calibrated  parameter  values  

representing  the  full  coupling  of  vegetation,  water,  and  energy  relations  in  SWAT.  

Comparison  of  MET,  MLAI+BM,  and  MLAI+BM+ET  against  M0  tells  us  how  much  model  

performance  has  improved  or  deteriorated  due  to  the  addition/removal  of  new  variables.  The  fourth  

experiment  (MLAI+BM+ET)  was  the  one  we  were  most  interested  in  because  it  fully  considered  the  

tree  growth  cycle  in  SWAT  and  included  the  largest  number  of  variable  constraints.  MLAI+BM   

compared  to  M0  tells  us  how  much  model  performance  has  improved  or  deteriorated  by  including  

improved  phenological  development  and  biomass  accumulation  without  adjusting  for  canopy  

evaporation,  plant  water  uptake,  and  soil  evaporation.  MET  shows  how  remote-sensed  ET  data  can  

help  predictions  in  ungauged  basins  or  watersheds  with  limited  streamflow  records.  M0  is  a  

baseline  scenario  serving  as  a  reference  to  measure  the  advantages  and  disadvantages  of  MET,  

MLAI+BM,  and  MLAI+BM+ET.  

2.5.  Streamflow  calibration  and  validation  strategies  

Hydrological  models  often  cannot  accurately  simulate  streamflow  under  default  parameterization.  

Each  watershed  is  unique  and  dominant  hydrological  processes  can  vary,  which  default  

parameterization  may  not  capture.  Thus,  model  calibration  is  frequently  performed  to  adjust  

selected  model  parameters  representing  the  processes  of  interest.  In  this  study,  we  employ  an  

automated  model  calibration  approach  to  enhance  SWAT’s  accuracy  in  simulating  streamflow  at  

the  watershed’s  outlet.  We  split  the  time  series  data  into  calibration  (1998-2014)  and  validation  

(2015-2018)  periods  in  both  watersheds.  SWAT  Calibration  and  Uncertainty  Program  (SWAT-

CUP)  (Abbaspour,  2015a),  a  standalone  calibration  software  developed  specifically  to  be  used  

with  SWAT,  was  used  to  optimize  model  parameters.  Model  calibration  was  carried  out  at  the  

daily  time  step  using  the  Sequential  Uncertainty  Fitting  algorithm  (SUFI-2)  option  in  SWAT-CUP.  
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In SUFI-2, global sensitivity analysis is performed by calculating the regression 

coefficients of the parameters generated by the Latin hypercube sampling method against the 

values of the defined objective function. The relative significance of each sampled parameter is 

measured using a t-test. Parameter sensitivities are computed by quantifying the average changes 

in the objective function resulting from changes in each parameter (Abbaspour, 2015b). The p-

value tests the null hypothesis that the coefficient of a parameter is equal to zero (i.e., the parameter 

is not sensitive). Low p-values (typically <0.05) indicate sensitive parameters. 

In SUFI-2, uncertainty in parameters is expressed as ranges representing uncertainties 

associated with forcing input data (e.g., precipitation), the conceptual model, parameters, and 

observations (Abbaspour, 2015b). Uncertainties in parameters are reflected as uncertainties in the 

model output variable, which are represented as the 95% probability distributions (95PPU). The 

95PPU is hence the model solution in a stochastic calibration approach, considering all sources of 

uncertainties. SWAT-CUP provides two statistics to quantify the fit between the 95PPU and 

observed data: P-factor and R-factor. The P-factor expresses the percentage of observed data 

enveloped by the 95PPU, while the R-factor is the relative thickness of the 95PPU band and is 

calculated as the average of the 95PPU thickness divided by the standard deviation of the 

corresponding observed variable (Abbaspour et al., 2018). Ideally, most of the observations should 

be captured by the 95PPU (i.e., P-factor close to 1) in a small envelope (i.e., small R-factor value). 

As model performance measures, this study used the coefficient of determination (R2), the 

Nash-Sutcliff-Efficiency (NSE), and the percentage bias (PBIAS). Further, NSE was selected as 

the objective function in SUFI-2, and 500 simulations were performed per iteration. The number 

of iterations was based on how fast the model was converging to a higher NSE value in the 

subsequent iteration. The parameters used to calibrate SWAT for streamflow in this study were 
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selected based on the model’s structure and equations regulating discharge computation described 

in Neitsch et al. (2011). 

We calibrated daily streamflow for the two extreme modeling experiments, namely M0 

(default) and MLAI+BM+ET (LAI + biomass + ET). Comparing these two calibration schemes can 

show the benefits of including all variables describing forest dynamics simulation in model 

calibration and how it changes the solution space (i.e., the most optimal value within the range of 

parameters) relative to a model constraint with gauged streamflow data only. Since MLAI+BM+ET 

considers improved LAI, biomass, and ET estimates and theoretically represents the most optimal 

model condition among the four experiments (i.e., a model able to predict forest attributes and 

streamflow reasonably well), this experiment was selected to quantify the effects of improved 

forest processes on automated streamflow calibration. Both calibration approaches are explained 

below. 

2.5.1. Traditional model calibration (M0) 

Calibration of M0 involved adjusting the parameters listed in Table S1 for the default model setup. 

This is a traditional calibration approach employed in most hydrologic modeling studies, where 

model parameters related to vertical fluxes (e.g., ET) and horizontal fluxes (e.g., surface runoff) 

are lumped together and calibrated with streamflow data only. This is considered a “simple 

strategy” (Daggupati et al., 2015), where a single model output variable (e.g., streamflow) is 

optimized at a single site, such as the watershed outlet. In their guidelines for calibration/validation 

of hydrologic models, Daggupati et al. (2015) only recommends this strategy for watersheds 

having uniform characteristics (e.g., climate, land-use, soil, slope). A major drawback of such 

calibration approach is that it may produce pseudo-accurate models showing statically good 

performances for streamflow at the watershed’s outlet, whilst completely misrepresenting internal 
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watershed processes. This calibration scheme was performed to generate a base condition to which 

the next calibration configuration could be compared. 

2.5.2. Multi-facet model calibration (MLAI+BM+ET) 

In this calibration scheme, we decoupled horizontal (streamflow) and vertical (ET) water fluxes 

by constraining parameter values representing biophysical processes within a physically 

meaningful range. This approach does not optimize parameters controlling vertical fluxes (e.g., 

CANMX, EPCO, ESCO) when performing automated streamflow calibration, which is typically 

the case in traditional calibration. Such parameters had their values derived for loblolly and slash 

pine trees at the field-scale level in a previous study by Haas et al. (2021b). At the UCW, 

previously calibrated parameters controlling the LAI development curve, water loss through ET, 

and tree total biomass for loblolly pine and slash pine were transferred from the Loblolly 2 – GA 

and Slash - FL sites described in Haas et al. (2021b). For the SFRW model, loblolly and slash pine 

calibrated parameters were transferred from pine plantation fields located approximately 25 km 

south of the watershed outlet, namely Loblolly 3 - FL and Slash – FL in Haas et al. (2021b). The 

transferred parameter values were extended to HRU’s covered by loblolly and slash pine at both 

watersheds. One could argue that transferring parameter values from field-scale to watershed-scale 

without further calibration is not adequate because of varying physical conditions (e.g., soil types, 

weather). Unlike reach/subbasin level parameters in SWAT, plant-specific parameters cannot vary 

spatially in the plant database. In other words, these parameters are species-specific and even 

though a given type of plant can be present in several HRU’s, its parameter values cannot change 

from HRU to HRU. This model limitation challenges a spatially distributed calibration of 

biophysical parameters in SWAT-CUP. Such an effort would essentially result in a lumped 

calibration inconsistent with the spatially distributed characteristic of remote-sensing data. Thus, 

22 



 
 

442  our  approach  is  adequate  to  capture  the  importance  of  forest  dynamics  in  hydrological  models  

since  the  biophysical  parameter  values  included  in  MLAI+BM+ET  were  developed  based  on  species-

specific  high-quality  datasets.   

2.6.  Ecohydrological  flow  parameters  

To  better  understand  the  degree  of  hydrologic  alteration  attributable  to  improved  forest  

parameterization  in  hydrologic  models,  we  utilized  the  Indicators  of  Hydrologic  Alterations  (IHA)  

desktop  model  (TNC  2009).  IHA  was  developed  by  The  Nature  Conservancy  (TNC)  based  on  

Richter  et  al.  (1996)  for  calculating  the  characteristics  of  natural  and  altered  hydrologic  regimes.  

This  tool  summarizes  long  periods  of  daily  flow  data  into  67  statistical  parameters  representing  

ecologically  relevant  conditions.  These  67  statistical  parameters  are  subdivided  into  two  groups:  

the  IHA  parameters  (33  parameters)  and  the  Environmental  Flow  Component  (EFC)  parameters  

(34  parameters).  In  the  current  study,  we  selected  10  IHA  parameters  and  12  EFC  parameters  to  

investigate  how  an  improved  representation  of  forest  dynamics  processes  in  SWAT  affects  model  

predictions  of  ecologically  relevant  flow  metrics  at  the  SFRW  and  UCW  from  1998  to  2018.  To  

accomplish  this,  we  fed  the  IHA  desktop  model  with  SWAT-simulated  daily  time-series  of  

streamflow  from  the  calibrated  M0  and  MLAI+BM+ET  models  as  well  as  with  observed  time-series  of  

streamflow  collected  at  the  outlet  of  both  watersheds  (i.e.,  USGS  stations  02341800  and  

02321000).  Next,  we  compared  the  percent  deviations  in  IHA  metrics  between  simulations  and  

observations.  The  percent  error  of  a  given  ecohydrological  flow  metric  in  relation  to  the  

observations  was  calculated  using  Eq.  2:   

𝑑𝑄𝑉    (2)   
   (%) 

 

where,  𝑋  corresponds  to  a  given  ERF  metric.  
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464 The  description  and  importance  of  the  IHA  and  EFC  parameters  used  in  this  study  are  

shown  in  Table  S1  of  the  supplementary  materials  (Appendix  B).  Figure  2  illustrates  the  

methodology  employed  in  the  current  study.  

465 

466 

467 

468 

469 Figure  2.  Methodology  flowchart.  

470 

471 3.  RESULTS  AND  DISCUSSION  

3.1.  Hydrological  responses  to  improved  forest  dynamics   472 
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The inclusion of improved forest dynamic processes in the model remarkably influenced the 

watershed hydrological responses. The improvements and drawbacks brought about by each 

modeling experiment are individually described and discussed below. 

3.1.1. The baseline model 

Prior to streamflow calibration, the baseline model configuration M0 showed poor performance in 

simulating daily and monthly streamflow, as well as monthly baseflow, at both watersheds (Fig. 

3-4). Flow duration curves of daily streamflows are shown for both watersheds in Fig. 3. As can 

be seen, high flows were captured reasonably well in M0, however, low flows were poorly 

simulated, especially at SFRW. Overall, daily streamflow was overestimated by 67% and 267% at 

UCW and SFRW, respectively, and NSE values were lower than 0.2 (Fig. 3). Similarly, monthly 

streamflow showed low NSE values and poor agreement with observed data at both watersheds 

(Fig. 4). M0 overestimated most of the peaks at both study sites. The monthly baseflow simulated 

by the SWAT models in M0 show big differences compared to observations (Fig. 5). M0 

overestimated baseflow by 55% at UCW and 460% at SFRW in the period 1998-2018. Simulated 

mean annual baseflow was also highly overestimated at both study sites compared to the observed 

data (Fig. S3 of the supplementary materials under Appendix A). The watershed-average ET 

simulated from 1998 to 2018 at the UCW was 614 mm/year in M0 (Fig. S2 – of the supplementary 

materials under Appendix A), 25% lower than MODIS estimates (815 mm/year). Similarly, at the 

SFRW, the simulated watershed-average ET was 546 mm/year, 57% lower than the MODIS 

estimated value of 1013 mm/year. Considering MODIS ET data, 24% of rainfall became runoff at 

SFRW and 37% at UCW. The predicted fractions in M0 were 59% at SFRW and 52% at UCW, 

which is the direct consequence of ET underestimation. 

25 



 
 

  

 
 
 
 
 

 

 

 

 

 
 

  

495 

496 Figure  3.  Model  verification  under  different  configuration  setups  against  USGS  observed  daily  streamflow  data  for  
different  exceedance  probability  of  simulated  streamflow  at  the  watershed  outlet  from  1999  to  2019  at  Upatoi  Creek  
at  Upper  Santa  Fe  watersheds.  The  flow  duration  curve  displayed  here  is  plotted  in  log  scale.  The  statistical  rating  
metrics  displayed  in  the  table  refer  to  daily  streamflow  variability  (not  shown),  and  not  to  the  exceedance  probability  
curves.  
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503 Figure  4.  Hydrograph  showing  monthly  simulated  streamflow  against  USGS  observed  data  for  different  model  
configurations  setups  from  1999-2019.  504 
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3.1.2.  Effect  of  ET  on  streamflow  simulation  

The  inclusion  of  previously  calibrated  ET  parameters  in  MET  dramatically  improved  the  model’s  

performance  for  streamflow  and  baseflow,  as  evidenced  by  increased  NSE  values  (Fig.  3-4).  The  

consistent  model  overestimations  of  streamflow  and  baseflow  produced  under  M0  were  remarkably  

decreased  at  both  study  watersheds  in  MET.  The  enhanced  model  performance  was  particularly  

alluring  at  UCW  where  simulated  daily  streamflow  was  overestimated  by  12%  and  baseflow  by  

less  than  1%.  By  analyzing  the  exceedance  probability  curves  (Fig.  3),  it  is  possible  to  notice  that  

MET  increased  the  agreement  between  simulated  and  observed  streamflow,  especially  for  low  

flows  (≥  70%)  at  SFRW.  Similarly,  monthly  peak  streamflow  and  baseflow  estimates  improved  in  

MET  in  comparison  to  M0  (Fig.  4  and  Fig.  5).  The  main  effect  of  MET  configuration  on  the  watershed  

water  budget  was  concerning  baseflow  (Fig.  6).  Increases  in  annual  average  ET  of  25%  at  UCW  

(2%  overestimation)  and  33%  at  SFRW  (20%  underestimation)  in  MET  compared  to  M0  led  to  

reductions  in  mean  annual  baseflow  of  41%  and  40%,  respectively.  Higher  ET  simulated  in  MET  

reduced  water  yields  in  the  watersheds.  Under  the  MET  model  configuration,  37%  of  precipitation  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

506 

507 Figure  5.  Hydrograph  showing  monthly  simulated  baseflow  against  estimated  baseflow  for  different  model  
configurations  setups  from  1999-2019.  Observed  baseflow  is  estimated  via  baseflow  separation  program.  508 
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became discharge at UCW, which perfectly matched the 37% calculated using MODIS-derived 

data. Also, 38% of the incoming precipitation resulted in modeled discharge at the SFRW, 

relatively close to the 24% estimated using observed data. These findings should not come as a 

surprise considering that ET is the main component of the forest water budget, having underlying 

effects on watershed-scale water quantity. Also, studies such as Zhang et al. (2012), Brauman et 

al. (2012), and Sun et al. (2011) have demonstrated that taller vegetation, such as forest stands, are 

associated with higher ET rates and consequent lower water yield. Other studies have shown the 

benefits of constraining ET in hydrological models based on remote-sensing data (Herman et al., 

2018; Odusanya et al., 2019; Rajib et al., 2016, 2018; Strauch and Volk, 2013). Our results are in 

line with studies such as Rajib et al. (2018b), who demonstrated the perks of ingesting remotely-

sensed PET from MODIS in simulating streamflow with SWAT. The authors showed that by 

improving ET estimations, the model predictions of streamflow improved as well, especially 

concerning high flows. Parajuli et al. (2018) derived time-series of ET from MODIS to enhance 

SWAT ET predictions and evaluated the impacts on streamflow simulation. Results showed that 

the model performance in predicting streamflow jumped from a NSE value of 0.39 under the 

default model settings to a value 0.71when considering ET data. In a similar study, Tobin and 

Bennett (2017) used ET data from the Global Land Evapotranspiration: the Amsterdam Model 

(GLEAM) to constrain SWAT parameter values related to ET in an experimental watershed in 

Oklahoma-USA. Their findings indicate a better match between simulated and observed 

streamflow when considering ET data. In the current study, results of MET suggest that readily 

available remote-sensing ET data can help to improve the performance of hydrological models in 

predicting streamflow and baseflow in ungauged watersheds. This finding concurs well with the 

study of Y. Zhang et al. (2020), who demonstrated the potential of solely using ET data to calibrate 
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547 hydrologic  models  in  222  ungauged  watersheds  in  Australia.  It  is  worth  highlighting  that  ET-

related  parameters  were  not  re-calibrated  for  our  study  watersheds  but  rather  transferred  from  the  

field-scale  level.  This  may  indicate  that  the  model  performance  could  be  further  improved  by  

carrying  out  a  site-specific  calibration  at  each  watershed.  

548 

549 

550 

551 

552 Figure  6.  Change  in  simulated  water  budget  under  different  model  setup  configurations  from  1999  to  2019  at  Upatoi  
Creek  and  Upper  Santa  Fe  watersheds.  553 
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555 3.1.3.  Effect  of  LAI  and  biomass  on  streamflow  simulation  
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In the next model configuration (MLAI+BM), we added calibrated parameter values regulating LAI 

and biomass prediction to the baseline model (but removed ET). As shown by the rating metrics 

and the flow temporal variability displayed in Figures 2-4, the model performance for streamflow 

and baseflow in MLAI+BM deteriorated compared to MET. SWAT performed particularly poorly in 

MLAI+BM at the UCW, where the performance metrics worsened even in comparison to the baseline 

model M0. In contrast, MLAI+BM showed superior performance compared to M0 for all statistical 

measures at SFRW. This difference can be understood by considering the different tree growth 

and dynamics of loblolly pine and slash pine. As described in section 2.1, UCW is dominated by 

loblolly pine while the SFRW is mainly covered by slash pine trees. As shown in Fig. S1 of the 

supplementary materials (Appendix A), the M0 configuration considerably overestimated LAI for 

loblolly pine at UCW, whereas, underestimated it for slash pine at the SFRW. As a result of lower 

simulated LAI at UCW, after incorporating previously calibrated LAI parameters, compared to 

M0, simulated ET in MLAI+BM had decreased 22% (Fig. S3 – of the supplementary materials under 

Appendix A). Consequently, the simulated baseflow increased 16% in relation to M0 and was 

further overestimated (Fig. S3 – of the supplementary materials under Appendix A), which led to 

the deterioration of model performance under MLAI+BM. As expected, due to lower ET losses in 

MLAI+BM, the runoff coefficient increased to 0.63, deviating significantly from 0.37 calculated with 

the observed data. These results are in good accordance with Sun et al. (2011), who highlights that 

monthly LAI is the single most important biophysical variable regulating ET. At the SFRW, 

because of larger LAI values obtained after the incorporation of pre-calibrated LAI parameters 

(Fig. S1 - of the supplementary materials under Appendix A), the MLAI+BM configuration predicted 

higher ET rates compared to M0, increasing the watershed-average ET by 12%. Accordingly, the 

simulated streamflow and baseflow were reduced in MLAI+BM (Fig. S3 - of the supplementary 
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materials under Appendix A), which ameliorated the model’s performance compared to M0. 

Besides LAI, the higher stand biomass predicted under MLAI+BM (Fig. S2 - of the supplementary 

materials under Appendix A) compared to M0 most likely contributed to the lower water yield and 

helped mitigating the model overestimation of streamflow observed in the M0 scenario at the 

SFRW. This is in good agreement with studies such as McLaughlin et al. (2013), which shows that 

reduced biomass may lead to reduced ecosystem water use and thus increased regional and local 

water yield. The extent to which the watershed water balance was impacted by LAI and biomass 

(Fig. 6) highlights the importance of considering forest dynamics in hydrologic modeling studies, 

and the necessity of including ET in the modeling spectrum. Past studies have also shown how 

biophysical variables such as LAI and biomass can help improving streamflow prediction in 

hydrologic models. For instance, Ma et al. (2019) and Rajib et al. (2020) have replaced SWAT’s 

empirical LAI algorithm with remotely-sensed LAI data assimilated from MODIS. Results showed 

superior model performances for simulating streamflow and sediment yield in China and United 

States. Guo et al. (2018) introduced new LAI and biomass algorithms to predict the growth and 

dynamics of Populus trees in SWAT. By constraining LAI and biomass parameters, the authors 

showed enhanced model performance in predicting streamflow, sediment, and nitrate. Unlike these 

studies, the methodology tested here does not involve modifying SWAT’s source code, but rather 

improving the representation of forest processes by constraining the model with physically 

meaningful information derived from remote-sensing, field observations, and published literature. 

Thus, the improved forest parameterization tested here is readily available and can be broadly 

useful to the modeling community. 

3.1.4. Effect of coupled water, surface land, and energy processes on streamflow 

simulations 
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Results from MLAI+BM+ET were the most telling in terms of the impacts of forest processes on the 

model performance of hydrologic predictions. Under MLAI+BM+ET, the models were constraint with 

the largest number of variables among all experiments, and, besides showing the best performance 

in predicting streamflow and baseflow, the models also predicted forest growth and dynamics 

reasonably well under this parameterization. At UCW, the model performance for streamflow and 

baseflow simulations slightly deteriorated compared to MET but largely improved in relation to M0 

and MLAI+BM (Fig. 3-4). Compared to MODIS-derived data, the watershed-average ET predicted 

in MLAI+BM+ET was less than 1% higher and showed the closest agreement with MODIS estimates 

among all modeling experiments at the UCW (Fig. S3 - of the supplementary materials under 

Appendix A). The mean annual baseflow simulated in MLAI+BM+ET also showed good agreement 

with the observed data (2% overestimation) (Fig. S3 - of the supplementary materials under 

Appendix A). Although the inclusion of improved LAI and biomass into the model configuration 

led to the deterioration in model performance compared to MET, it is more coherent to include 

biophysical parameters values representing LAI development and biomass accumulation along 

with ET calibration, given the interplays between tree attributes (e.g., aboveground biomass and 

canopy) and the volume of water lost to the atmosphere as vapor. Additionally, enhanced model 

representation of tree attributes such as LAI and biomass may positively influence water quality 

applications. For instance, the adjusted total biomass to residue ratio (BIO_LEAF) from 30% to 

2% reduces the amount of plant residue on the soil that is available for mineralization and 

nitrification. Likewise, the sediment yield simulated in SWAT through the Universal Soil Loss 

Equation (USLE) (Williams, 1975) is affected by the amount of residue on the soil surface. The 

combined positive effects of MET and MLAI+BM at SFRW yielded MLAI+BM+ET as the best model 

configuration at this study site. The agreement between the simulated and observed streamflow 
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and baseflow at the watershed outlet increased under MLAI+BM+ET (Fig.2-4) compared to the other 

experimental conditions, as indicated by the highest goodness-of-fit measured by NSE and R2 . The 

model overestimation of horizontal fluxes was also the smallest under MLAI+BM+ET at SFRW. This 

was mainly because of the better agreement between watershed-average simulated ET and 

MODIS-derived data (Fig. S3 - of the supplementary materials under Appendix A), which 

decreased the simulated water yield compared to the other modeling experiments. The runoff 

coefficient estimated based on simulated ET (0.34) was the closest to the observed runoff 

coefficient (0.24) among all scenarios. The changes produced in the water balance components, as 

we progressively moved from one experiment to the next, are shown in Fig. 6. There was a 

significant difference between M0 and MLAI+BM+ET, with a drastic increase in predicted ET and 

consequent decrease in predicted baseflow under the MLAI+BM+ET configuration at both watersheds. 

The water balance of MLAI+BM+ET at both watersheds concurs with the findings of Amatya and 

Skaggs (2011) and Amatya et al. (1996), which indicate that streamflow is mainly derived from 

subsurface flow (i.e., lateral flow and baseflow) in forested ecosystems, where surface runoff is 

usually low. The results of MLAI+BM+ET indicate that the main improvement in streamflow and 

baseflow prediction came from the ET component. Studies such as Strauch and Volk (2013) and 

Alemayehu et al. (2017) also reported improvements in modeled streamflow under enhanced LAI 

and ET predictions. Similarly, Yang et al. (2018) showed how enhanced biomass and ET estimates 

can improve the model’s performance in simulating streamflow and sediment losses in a forested 

watershed. Our findings are also in line with Rajib et al. (2018) and Ha et al. (2018), who showed 

the benefits of incorporating improved biophysical parameters values regulating variables such as 

LAI and ET for predicting streamflow with SWAT. However, our study is the first to fully consider 

33 



 
 

               

         

            

               

               

               

               

               

               

              

              

     

647

648

649

650

651

652

653

654

655

656

657

658

the effects of forest dynamics (i.e., LAI, biomass, and ET) on hydrological processes by 

constraining parameter values representing nationally relevant tree species. 

3.2. Impact of forest dynamics on streamflow calibration and validation 

As mentioned earlier, SWAT was calibrated for streamflow only under M0 and MLAI+BM+ET. Note 

again that M0 represents the current practice in watershed modeling. Based on the visual 

comparison and statistical measures, MLAI+BM+ET proved to be a better model in predicting daily 

streamflow at both watersheds during the calibration and validation periods (Fig. 7). According to 

the model performance evaluation criteria proposed by Moriasi et al. (2015), the results achieved 

with the multi-facet calibration scheme ranged from “good” to “very good” at UCW, and 

“satisfactory” to “very good” at SFRW. Under the traditional calibration scheme, the model 

performance fell within the same range of categories at UCW but deteriorated to unsatisfactory-

satisfactory at SFRW. 
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The  enhanced  model  performance  achieved  with  the  multi-facet  calibration  scheme  shows  

that  better  representation  of  forest  dynamic  processes  enables  SWAT  to  yield  more  accurate  

streamflow  estimates.  Our  findings  are  in  disagreement  with  the  results  of  studies  such  as  Herman  

et  al.  (2018),  Dembélé  et  al.  (2020),  and  Gui  Ziling  et  al.  (2019),  which  suggest  that  the  

improvement  of  terrestrial  processes  such  as  ET  and  soil  moisture  resonates  in  lower  model  

performance  in  predicting  in-stream  fluxes  at  the  watershed’s  outlet.  In  the  aforementioned  studies,  

the  authors  pursued  a  spatially-distributed  calibration  approach  of  terrestrial  variables  by  

constraining  ET- and/or  soil  moisture-related  parameters  for  each  subwatershed.  A  pitfall  of  such  

 

 

 

 

 

 

 

 

 

659 

660 Figure  7.  Observed  vs.  simulated  daily  streamflow  in  calibration  and  validation  periods  under  traditional  and  multi-
facet  calibration  approaches.  The  upper  hydrographs  show  the  monthly  discharge  evolution  in  the  period  1999-2019,  
while  the  bottom  flow  duration  curves  show  exceedance  probability  of  simulated  streamflow  at  the  watershed  outlet  
from  1999  to  2019  at  Upatoi  Creek  at  Upper  Santa  Fe  watersheds.  The  flow  duration  curve  displayed  here  is  plotted  
in  log  scale.  The  statistical  rating  metrics  displayed  in  the  table  refer  to  daily  streamflow  variability.  
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an approach is that it lumps land use/cover classes together and does not consider species-specific 

characteristics. For instance, it is fair to assume that the ET rates of forests and shrubs are 

substantially different and that fitting parameter values to satisfy both species according to an 

objective-function may misrepresent both species and lead to unrealistic parameter values. On the 

other hand, under our calibration approach, we tune the parameter values to dominant tree species. 

Our results also highlight the advantages of decoupling horizontal hydrological fluxes (i.e., 

streamflow) from vertical hydrological fluxes (i.e., ET) when calibrating watershed models. In the 

traditional calibration approach, ET-related parameters such as CANMX, EPCO, and ESCO were 

calibrated simultaneously with parameters regulating the horizontal water flux. Although this led 

to an increased mean annual ET in M0, the watershed-average annual ET was still lower compared 

to MODIS estimates. This underestimation of rainfall lost through ET resulted in a higher 

overestimation of simulated streamflow in M0 compared to MLAI+BM+ET (Fig. 7). Moreover, in the 

calibration period, the obtained values of P-factor and R-factor were 0.07/0.73 at SFRW/UCW, 

and 0.19/0.58 at SFRW/UCW, respectively, with the traditional calibration approach. Under the 

multi-facet calibration scheme, P-factor and R-factor ranged from 0.09-0.72 and 0.11-0.50, 

respectively. While the values of P-factor did not change much according to the calibration 

approach employed, R-factor showed a considerable decrease with the multi-facet calibration 

scheme, suggesting reduced uncertainties due to consideration of improved forest dynamic 

processes in the modeling framework. 

Results from the global sensitivity analysis revealed that CN2 is the most sensitive 

streamflow parameter at both watersheds under M0 and MLAI+BM+ET (Fig. S4 – of the 

supplementary materials under Appendix A). However, the rank of sensitive parameters changed 

in response to the calibration approach utilized. Parameters such as saturated soil hydraulic 
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conductivity (SOL_K), groundwater revap coefficient (GW_REVAP), groundwater delay time 

(GW_DELAY), and deep aquifer percolation factor (RCHRG_DP) became less sensitive in the 

multi-facet calibration scheme at the UCW. An opposite trend was observed at the SFRW, where 

most of the groundwater-related parameters had their sensitivity increased under the multi-facet 

model calibration scheme, as indicated by lower p-values in Fig. S4 (of the supplementary 

materials under Appendix A). This may be related to the higher baseflow:precipitation ratio 

observed in the SFRW compared to the UCW (Fig. 6). 

A similar effect can be noticed by paying closer attention to the best parameter values 

found with the traditional and multi-facet calibration schemes (Table S3 - of the supplementary 

materials under Appendix B). Parameters such as RCHRG_DP and GW_DELAY, for instance, 

witnessed substantial changes in their best-fitted values depending on the calibration approach. At 

both study sites, RCHRG_DP decreased in the multi-facet calibration scheme, which is most 

probably because of higher ET losses in MLAI+BM+ET compared to M0. In the traditional calibration 

approach, because of the underestimated ET rates in M0, the models tended to lose more water 

through deep aquifer percolation in order to compensate for streamflow overestimation. Similarly, 

the improved forest dynamics considered in the multi-facet calibration scheme decreased the lag 

between the time that water exits the soil profile and recharges the shallow aquifer (GW_DELAY). 

Because of excessive water yield and percolation produced in M0, the traditional calibration 

scheme slowed down the recharge to the shallow aquifer by assigning larger values to 

GW_DELAY. 

Although the traditional calibration approach was able to yield a “very good” model 

performance in predicting streamflow, it massively failed to accurately replicate key forest 

dynamic processes such as LAI and biomass within the watersheds (Figures S1 and S2 – of the 
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supplementary materials under Appendix A). This “very good” model performance for streamflow 

was accomplished at the cost of an excessively high deep aquifer percolation and lumped values 

of parameters regulating plant transpiration (EPCO), soil evaporation (ESCO), and canopy storage 

(CANMX) (Table S3 - of the supplementary materials under Appendix B). Alternatively, the multi-

facet calibration scheme demonstrated the feasibility of constructing realistic models that can 

reasonably represent forest processes without losing accuracy in predicting streamflow. Our study 

is a prime illustration of the concept of equifinality, where models calibrated based on different 

parameter values may yield equally good outputs (Beven, 2006; Beven and Freer, 2001). 

Equifinality has been widely associated with semi-distributed watershed models such as SWAT 

(Ficklin and Barnhart, 2014; Her and Chaubey, 2015; Shen et al., 2012). As highlighted by studies 

such as Tobin and Bennett (2017), equifinality can be mitigated by constraining the model with 

more observations. This is demonstrated here, where models constrained by intra-watershed 

processes such as LAI, ET, and biomass showed improved performance and reduced uncertainties 

in predicting streamflow, giving the right answers for the right reasons. Although forest dynamics 

are usually overlooked in watershed modeling studies, we highlight the study of Fernandez-

Palomino et al. (2020), which also showed how the calibration of species-specific LAI and ET can 

improve the simulation of streamflow in SWAT. It is time for watershed modelers to incorporate 

spatially-distributed information such as remote-sensing based time-series into the modeling 

framework in order to build models that accurately capture terrestrial and aquatic processes. That 

said, we believe that our study may open new avenues and bring contributions towards more 

realistic applications of watershed models. 

3.3. Impact of forests on ecological flows 
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Biotic processes such as vegetation growth may affect the hydrologic regime within the watershed 

(Caro Camargo and Velandia Tarazona, 2019; Dalzell and Mulla, 2018; McLaughlin et al., 2013; 

Mwangi et al., 2016). However, the interplays between the forest and hydrological processes and 

their watershed-scale effects may not be immediately evident based only on simplistic analysis 

such as daily and seasonal streamflow, baseflow hydrographs, and mean annual water balance. 

Figure 8 illustrates the effect of improved forest processes on the relative error of simulated 

mean monthly flows at both study watersheds. At the UCW, 9 out of 12 parameters showed a 

smaller percent deviation in relation to the observations under the MLAI+BM+ET model configuration, 

where the inclusion of enhanced forest dynamic processes reduced the model overestimation of 

mean monthly flows (Fig. 8a). The only cases where M0 outperformed MLAI+BM+ET in simulating 

mean monthly flows were for March, August, and September. At the SFRW, improved forest 

dynamics also reduced model overestimation of monthly flows, all of which showed better 

agreement with observation under MLAI+BM+ET (Fig. 8b). The relatively high percent deviation of 

simulated monthly flows at the SFRW is most likely related to the higher model overestimation of 

streamflow and poorer performance compared to the UCRW model (Fig. 7). Since monthly flows 

represent the normal mean daily water conditions for a given month, accurate predictions can be 

valuable for water resources management applications. Additionally, the magnitude of monthly 

flows have impacts on aquatic ecosystems and can influence habitat availability, the availability 

of water for terrestrial animals, besides affecting physical characteristics such as water temperature 

and oxygen concentrations (Richter et al., 1996; TNC, 2009). 
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The  enhanced  representation  of  forest  processes  in  SWAT  also  resonated  in  the  overall  

improvement  of  the  model  performance  for  simulating  extreme  flows  of  various  durations  at  both  

watersheds  (Fig.  9).  At  the  UCW,  MLAI+BM+ET  yielded  smaller  percent  errors  than  M0  in  replicating  

maximum  flows  of  daily  (1-day,  3-days),  weekly  (7-days),  monthly  (30  days),  and  seasonal  
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763 Figure  8.  Percentage  change  of  simulated  monthly  low  flow  with  traditional  and  multi-facet  model  calibration  in  
relation  to  observed  USGS  daily  streamflow  data  from  1999  to  2019  at  Upatoi  Creek  (A),  and  Upper  Santa  Fe  River  
watersheds  (B).  
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durations (90-days), besides showing better agreement with observations in predicting minimum 

flows of monthly and seasonal durations (Fig. 9a). MLAI+BM+ET performed poorer than M0 in 

simulating minimum flows of daily and weekly durations. Similar results were found at the SFRW, 

where model simulations of extreme flows under MLAI+BM+ET returned smaller percent deviations 

from the observations (Fig. 9b). The only exceptions were maximum flows of daily and seasonal 

durations for which the model performance deteriorated under MLAI+BM+ET compared to M0. As 

shown in Fig. 7, low flows were substantially overestimated at the SFRW, which may help to 

interpret the large and positive percent deviation of minimum flows found at this watershed. 

Overall, improved forest dynamics mitigated SWAT’s overestimation/underestimation of 

minimum/maximum flows at the SFRW. These findings are relevant considering the importance 

of extreme flows for water resources management (Wheater and Evans, 2009), flood control 

(Archer et al., 2007; Arnaud et al., 2002), infrastructure design (Hailegeorgis and Alfredsen, 2017; 

Pregnolato et al., 2016), and ecosystems health (Kiesel et al., 2017; Richter et al., 1996), and 

indicate that the benefits of accurately representing forest processes in watershed models 

extrapolate improved streamflow simulation. 
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787 Figure  9.  Percentage  change  of  simulated  extreme  flows  with  traditional  and  multi-facet  model  calibration  in  
relation  to  observed  USGS  daily  streamflow  data  from  1999  to  2019  at  Upatoi  Creek  (A),  and  Upper  Santa  Fe  River  
watersheds  (B).  
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791 3.4.  Broader  implications  and  limitations  

Although  our  improved  forest  parameterization  relied  on  field  observations  from  nearby  pine  

plantation  fields,  we  did  not  have  field-measured  data  within  the  study  watersheds.  Thus,  our  

methodological  insights  were  validated  against  remotely  sensed  LAI  and  ET  and  gridded  biomass  
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data. As with any remote-sensing estimate, there are uncertainties associated with MODIS LAI 

and ET data (Jensen et al., 2011; Long et al., 2014), as well as with the USDA Forest Service forest 

biomass data. While it may raise uncertainties concerning the validity of our findings, the global 

coverage of MODIS data facilitates the replication of our methodology worldwide. Moreover, 

SWAT’s flexible plant database allows other researchers to further refine our forest 

parameterization for other evergreen species. 

In this study, the focus of our modeling effort was on streamflow and baseflow predictions. 

The impacts of improved forest growth and dynamics on modeled water quality (e.g., sediment 

yield, nutrient load) must be addressed in a future endeavor. As demonstrated here, increased ET 

losses resulting from our improved forest parameterization led to decreased surface runoff and 

baseflow. It can be inferred that lower surface runoff and baseflow rates will likely decrease 

sediment and nutrient loads transported to the main channel. Additionally, the adjusted amount of 

biomass converted to residue every year reduces the source of fresh residue on the soil surface 

available for mineralization and nitrification. Consequently, the forest parameterization tested in 

this study may resonate in less nitrate being transported to water bodies. The sediment loss may 

also be impacted by the improved forest parameterization, especially because the USLE’s cover 

and management factor is computed as a function of plant residue. 

4. SUMMARY AND CONCLUSIONS 

The improved representation of forest processes in SWAT returned better streamflow and 

baseflow predictions. This was demonstrated by performing four modeling experiments aiming to 

show the individual impacts of LAI, biomass, and ET on water fluxes. Results showed that 

improved ET prediction is the main reason leading to more accurate streamflow and baseflow 
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simulations in watershed models. The improvements in forest processes substantially altered the 

watershed water budget towards increased ET and decreased baseflow rates. 

By calibrating streamflow-related parameters with and without the inclusion of improved 

LAI, biomass, and ET, we demonstrated that a physically meaningful representation of forest 

hydrological processes led to superior model performance in predicting streamflow. Moreover, the 

improved forest parameterization decreased the uncertainties associated with daily streamflow 

prediction. The importance of forest dynamics was further scrutinized by analyzing multiple 

ecohydrological parameters. Our results point to the importance of accurately accounting for forest 

processes in watershed models, especially in highly forested watersheds. The latter not only yields 

a more realistic model, but also enhances the model’s performance in predicting streamflow, 

reduces the model uncertainties, and improves the terrestrial and aquatic connections, as 

demonstrated by the 22 ecohydrological parameters considered here. 

Given the considerable disparity between the two extreme model configurations (i.e., M0 

and MLAI+BM+ET) in replicating the watershed water budget, the conclusions drawn by each model 

would largely differ. This could generate impacts on management decisions in case the models 

were employed to support decision-making. Therefore, we suggest that key forest processes such 

as LAI, biomass, and ET should be ameliorated in hydrological models before simulating 

streamflow. 

Finally, by constraining the models with readily available remote-sensing data we were 

able to decouple vertical water fluxes and processes (e.g., evapotranspiration, plant water uptake, 

soil evaporation, and canopy storage) from horizontal water fluxes (i.e., streamflow) in model 

calibration. This allowed us to simultaneously capture forest dynamics and in-stream processes 

reasonably well. Such a level of detail and representation of plant-water-energy relations would 
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840 hardly  be  obtained  through  model  calibration  against  gauged  streamflow  data  only.  Considering  

that  the  ultimate  goal  of  watershed  modeling  studies  is  typically  drawing  scenario  analysis  

representing  different  real-world  conditions,  a  model  able  to  accurately  represent  terrestrial  and  

in-stream  processes  can  produce  positive  implications  for  watershed  modeling  applications.  
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